
Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 49|P a g e

Comparative Analysis of Model Based Testing and Formal Based

Testing - A Review

Vatsal Mishra*, Shashank Shekhar*, Shashank Shankar* Manjula R**
* (B.Tech Computer Science and Engineering, VIT University, Vellore)

** (Associate Professor School of Computer Science and Engineering, VIT University, Vellore)

ABSTRACT

Software testing is one of the most important steps in the process of Software Development. Testing provides

the glimpse of the proper functioning of the system under different conditions. It makes it a necessary step to

choose the best testing method for the software system to be successful and accepted by a large number of

people as the market is really competitive these days and only error free systems can survive for a longer period

of time. This paper gives the comparative analysis of two major methods of testing : Formal Specifications

Based Software Testing and Model Based Software Testing, which are used widely in the process of software

development process. It brings out how these two methods of testing can provide reliability to software system

including the major uses, advantages, and disadvantages of both the testing methods. It briefly gives the detailed

comparative analysis of these two methods of software testing. It also brings out the situations where formal

specifications based testing is more effective and efficient while model based testing being effective in others.

This comparative analysis will help one in deciding on a better testing technique, depending upon the situation,

and requirements of software, for the software to be successful in long run.

Keywords : Model Based Testing, Formal based Testing, Specification Based Testing, Software Testing.

I. INTRODUCTION

Software defects days are not limited to only

coding error but the errors can happen in different

ways [5], thus comes software testing which is an

integral element of software development which

should be done in a systematic approach [1].

Software testing is a component of software

engineering which used for evaluating the

functionalities of the system to find out whether the

system is in line with functional requirements

given. It can also be termed as investigation to

check for different errors in the system and

appraise the stakeholders with all the dimensions of

the system implementation i.e. it tells the user

about various utilities as well as potential risks of

the system which was put to the test [3].

The history of software testing dates back to 1979

when Genford J Meyers initially introduced the

separation of debugging from the process of

testing[14]Further in the year 1988 Dave Gelperin

and William C. Hetzel did the classification of

software testing into goals and phases.[16-21]

In software testing we check the software by

implementing it and then marking it on various

parameters which indicates the quality of the

system being tested. Testing is not a single activity

but is a collection of activities and can be termed as

a process .The properties to evaluate depends upon

the type of system being tested, on what parameters

the client’s desire and the audience on target.

Testing can have static or dynamic in nature. In

static testing the fault finding is done without

execution of the code and in dynamic testing the

fault finding is done while the code is executed.

The verification process has static nature whereas

validation process has dynamic nature.

As we all know testing and verification is one of

the most important step in making a software, it

constitutes around 30-40% of effort and time of the

developer .There are many ways of testing the

software like white box testing, black box testing,

specification base testing ,model based testing,

visual testing, grey box testing etc[2].

Both Model Based testing and formal specification

based testing comes under black box testing.Black-

box testing is a method of software testing that

examines the functionality of an application

without peering into its internal structures or

workings. This method of test can be applied to

virtually every level of software testing: unit,

integration, system and acceptance [13].

Here the paper concentrates on two major testing

models which are the model based testing and the

formal or specification based testing. These two

models are extensively used in various commercial

and educational fields these days. These models

work towards single motive to evaluate the

software but the methodology adapted by both of

them is different. The comparative analysis shows

how they differ from each other in various aspects

and variations in their functionality and utility.

RESEARCH ARTICLE OPEN ACCESS

https://en.wikipedia.org/wiki/Software_testing

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 50|P a g e

II. RELATED WORK
In Dalal, Siddhartha R., et al. [16] the report on

various practices of development of tools and

various methodologies related to model based

testing. Some case studies have been shown which

provides details and results of application of

combination of test-generation methods on a large

scale to diverse applications. Based on these, an

insight has been given into what is practiced and

what are the obstacles in transferring these

technology to testing organizations Lyu, M.R [1]

offers a view of the development, testing, and

evaluation schemes for software reliability, and its

integration to form a unified and consistent

paradigm . Specifically, techniques and tools for

the three software reliability engineering phases

which are modeling and analysis, design and

implementation, testing and measurement have

been elucidated by the author. The book

Practical model-based testing: a tools

approach [4] gives an insight to model-based

testing in a practical manner, shows the way to

write models for testing purposes and usage of

model-based testing tools to generate test suites. It

aims at testers and software developers who wish

to use model-based testing, rather than at tool-

developers or academics used in specification

based testing. In Fujiwara, S.et al. [7] methods for

the selection of appropriate test case, an important

issue line with testing of protocol implementations

as well as software engineering, is shown. Several

issues that have an impact on the selection of a

suitable test suite including the consideration of

interaction measures, several test architectures for

protocol testing and the fact that many

specifications do not satisfy the assumptions made

by most test selection method grounds have been

shown. These papers are closely related to each

other and give an insight of evolution of model

based testing since its inception.

Hans-Martin Horcher explained a way to get more

benefits from formal specifications apart from

specification phase, in verifying the

implementation against the specifications. He

explained the use of specification in order to derive

input test data and to evaluate the test results. This

approach is described using the specification

language Z which provides a greater degree of

automation, improving the quality of testing

process [26]. Charles proposed a formal semantics

for the production of test cases from requirements

giving a syntactical characterization of the method,

which is described over the LTL formulae. He

showed various examples to prove the application

of the approach [29]. Mirza Mahmood Baig

described about an important problem in software

testing i.e. time complexity. He has decreased the

time complexity related with the software testing

with the help of Grover’s Search Algorithm [34].

Mona Batrapresented a comprehensive analysis of

formal methods including their goals, advantages,

and limitations. Her research work aimed to

help the software engineers in order to identify

the uses of formal methods at various level of

software development, and had a good reference of

the requirements phase[37].

Andersson and Runeson et al. [42] presented a

qualitative survey of the verification and validation

processes in 11 Swedish companies by exchanging

experience between the companies. They

concluded that in large companies, the documented

process is emphasized while in small companies,

key individuals have a dominating impact on the

procedures. Commercial tools are used in large

companies while small companies make in-house

tools or use shareware. Despite the differences in

approach verification and validation is important in

all industries. Gotel and Finkelstein [44]

investigated and discussed the underlying nature of

requirements traceability problem. They introduced

the distinction between pre-requirements

specification (pre-RS) traceability and post-

requirements specification (post-RS) traceability

and explained how the majority of the problems are

due to poor requirements traceability are due to

inadequate pre-RS traceability and show the

fundamental need for improvements.

Malaiyamodeled the relation among testing effort,

coverage and reliability, and present a logarithmic

model that relates testing effort to test coverage

(block, branch, e-use or p-use). The results are

consistent with the known inclusion relationships

among block, branch and p-use coverage measures

and eliminates variables like test application

strategy from consideration.

III. Model Based Testing
Model based testing is a software application

which is used for testing a system or a software in

which test cases (called as models) are generated in

whole or in part from a model that describes

functional aspects of the system under test (SUT)

which represents testing strategies and testing

environment. [4] the models are used to generate

tests which can be deployed both online as well as

offline. Model based testing can also be called as

Model Driven Testing.

The basic idea in model based testing is generation

of models which can be transition system, UML

State Machines, finite state machines, class

diagrams along with constraints, etc.[7-12]from

which complete test cases which is input and

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 51|P a g e

believed output pairs that can be generated. It

supports investigation, construction, and prediction

of the modeled system.

In online testing the model and the considered

system for test are connected and the tests happen

dynamically whereas in offline testing the test

cases/suites are generated which can be later be

tested with the system using a tool.

A model which describes the system or software

under the testing process can be taken as its partial

or abstract behavior towards the system. Hence the

test cases which are taken out from a model can be

said as functional tests on the similar platform of

abstraction as the model. These test cases are

collectively known as an abstract test suite.

The following diagram shows a simplified

workflow for MBT. [6]

Figure 1. Workflow of Model Based Testing

The process followed in model based testing:

1) The creation of model can be done in

several ways. [7-12] The model is created based on

the requirements, specifications or use cases which

are provided. The model goes through various

feedbacks from the user before being developed as

a formal final model. The implementation is done

based on the model.

2) After the model is created the test suites

are generated. These test suites can be derived in

various manners because the testing is

experimental and it is based on heuristics these test

suites contain test sequences and test oracle.

3) The role of test sequences is to control the

system under test, which makes it go into the

different conditions under which it can be tested

whether the system has followed the model on

which it was developed or not . The test oracle

checks the growth of the system in terms of its

implementation and delivers a pass or fail verdict

based on its conformation with the model.

4) The verdict is the final conclusion of the

testing process and it provides details about all the

artifacts. A failure indicates that the behavior of the

system under test does not go in line with the

model predictions. This generally means errors or

faults in the implementation process, but

sometimes it can also mean that a there is a flaw in

model creation or design or that the informal

requirements from which it was created were

incorrectly taken.

There are various tools which can be used for

model based testing. Some of them are:

Conformiq designer [22]commercial tool in which

models can be generated as UML State Machines

and in Qtronic Modeling Language (QML). Tests

can be exported to test management tools or

TTCN-3.

Graphwalker which is an open source tool in which

test cases are made from finite state machines and

uses search algorithms to A* or random search

algorithm to cover various states,edges,

requirements.

JSXM[23] which is an academic type software, it is

a model animation and test generator which uses

different types of EFSMs as its input.The generated

tests are then converted into JUnit test cases.

PyModel[24] which uses python as the coding

language which is an open source tool which

supports online as well as on-the-flying testing

methods.It uses compositions for controlling the

scenario. The guidance of the coverage can be done

as programmable strategy.

 Spec Explorer [25] which develops the programs

in C# is a commercial tool is a successor of AsmL

test tool which is now integrated with Visual

Studio.

Some applications of model based testing are

arithmetic and table operators, message of parsing

and building, rules based system and user

interfaces .

Although this type of testing requires significantly

more up‐front effort in building themodel, it offers

an upper hand over traditional software testing

methods.

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 52|P a g e

IV. FORMAL SPECIFICATION BASED

TESTING

Formal Specifications based Testing has now

gained much importance in the field of software

development.The objective of Formal

Specifications based Testing is to test the

functionality of software according to the required

specifications. Formal methods of testing usually

include mathematical notations, formal logic and

proofs in some cases used in verifying the

functionalities of software. Formal Specifications

helps greatly in simplifying the process of testing

in software development process.It is one of the

most convenient testing method which helps in

detecting errors and bugs in software functioning.

It is capable of producing not only the test data sets

for testing purpose but also helps in analyzing test

results effectively and efficiently. In fact, this is

one of the major uses of Formal Specifications.

These tests might be functional or non-functional

in nature.

Most of the existing tools and techniques used for

software testing requires testing of a written set of

programs. But the evolution of formal methods of

software testing has given rise to the possibility of

starting from the specifications for introducing

some testing methodsin formal framework. Prolog

is one of the tool used in formal based testing for

test set production.

Formal Specifications based testing can be easily

fit in the software development processes without

having the need to replace traditional methods of

software development as cited in [26]. It is really

effective in case of unit testing in which individual

components are tested independently to ensure that

they operate correctly [32]. The mathematical

notations used in formal methods helps in defining

the required functionalities of the system.

There are many methods of testing based on the

formal specifications of software such as Algebraic

Specifications, Finite State Machines, transition

Systems etc. Algebraic specification is basically

used to specify the software behavior with the help

of methods rose from abstract algebra. Some tools

for developing algebraic specification languages

are LARCH, ASL etc.Some of other formal

specifications languages includeOBJ, LOTOS,

ASM, LARCH, Communicating Sequential

Processes (CSP) etc [35].

ASM (Abstract state machine) is a state machine

which operates on arbitrary data structures known

as states. The ASM Method is a scientific and

practical systems engineering method which

bridges the gap between the two ends of system

development. It uses 3 concepts:

a) ASM: a pseudo-code, which generalize

Finite State Machines

b) Ground model: a form of rigorous

blueprints

c) Refinement: a general scheme for

instantiations of model abstractions to elements of

the concrete system.

OBJ is basically a family of declarative languages

and was created by Joseph Goguen in the year of

1976. It consists of generic modules, abstract data

types, expressions to combine modules etc.

The family of Larch formal specification

languagesaremeant to be used for the accurate

specification of computer systems. They provide

the capability forbetter specification of computer

programs and the derivation of proofs regarding the

behavior of the program. Larch family has a

language called LSL (Larch Shared Language)

for algebraic specification of abstract data types.

Communicating Sequential Processes (CSP) is a

type of formal specification language and helps in

description of various patterns of interaction in

concurrent system. It belongs to the family of

mathematics known as process algebras, and is

based on message passing through channels.

LOTOS (Language of Temporal Ordering

Specification) is a formal specification language

which is basically based on temporal ordering of

events as the name suggests. LOTOS is mostly

used for specifying protocols in OSI Standard. It is

an algebraic specification language that has two

parts: a part for the data description and operations,

and a part for concurrent processes description,

which is based on process calculi.

The Z notation is one of the most

popular formal specification languagethat is used

for description and modelling of the computer

systems. It mostly targets the specification

of computer programs and computer-based systems

in general. Z consists of a standard catalogue which

is atoolkit of commonly used mathematical

predicates and mathematical functions.

Apart from this formal based methods are useful in

reduction of time complexity which is one of the

major issue in software development. It can be

done using Grover’s Algorithm as cited in [34].

These methods of testing is are also capable of

determining the causes of software failure during

testing processes. Test sets and the related

hypotheses can be generated easily using Horn

Clauses [31].

https://en.wikipedia.org/wiki/Joseph_Goguen

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 53|P a g e

V. COMPARATIVE ANALYSIS
5.1 Definitions used

5.1.1 Statement coverage (Block coverage)

In software testing, testers are required to generate

test cases to execute every statement at least once

[38]. A test case serves as an input to the program

under test, and is executed during testing.

Statement coverage is defined as the fraction of

total number of blocks or statements that are

executed by test data [38, 39].

5.1.2 Branch coverage (Decision coverage)

Branch coverage is defined as the fraction of total

number of decisions or branches that are executed

by test data [25, 39]. It also helps to ensure that no

branch results to abnormal behaviour of application

and validating all possible branches in the program

[45].

5.1.3 Path coverage

In path coverage, test case is executed at least once

i.e. all the execution paths of theprogram from

entry to exit are executed during testing [40, 41].

5.1.4 Requirement Traceability

Requirement traceability is the ability to describe

and follow a requirementin both forward and

backward direction [42], by defining and

maintainingrelationships to related development

artefacts [43] such as code, configuration files

andtest cases. Testing is a significant component in

the software development lifecycle.Having many

test cases leads to increase in effort and cost spent

on testing, thus many industrial developers, testers

and managers give a lot of importance to

traceability [44, 41]. There are some tools support

to maintain, retrieve and record trace information

manually [46]. However, this is time consuming,

labour- intensive and error-prone [47, 44]. It is

more convenient and important to create, maintain

and find the links of traceability in testing through

an automated process as requirement traceability

links are outdated when a software evolves.

e.g.: Calculation of statement coverage, branch

coverage and path coverage for the following code

snippet.

Read P

Read Q

IF P + Q > 100 THEN

Print "Large"

ENDIF

IF P > 50 THEN

Print " P Large"

ENDIF

Figure 2.Flowchart for code snippet

 Statement Coverage
To calculate statement coverage, find out the

shortest number of paths following which all the

nodes will be covered. Here by traversing through

path 1A-2C-3D-E-4G-5H all the nodes are

covered. So by travelling through only one path all

the nodes 12345 are covered, so statement

coverage in this case is 1.

 Branch Coverage
To calculate Branch Coverage, find out the

minimum number of paths which will ensure

covering of all the edges. In this case there is no

single path which will ensure coverage of all the

edges at one go. By following paths 1A-2C-3D-E-

4G-5H, maximum numbers of edges (A, C, D, E, G

and H) are covered but edges B and F are left. To

covers these edges we can follow 1A-2B-E-4F. By

combining the above two paths we can ensure of

travelling through all the paths. The aim is to cover

all possible true/false decisions.Hence, branch

coverage is 2.

 Path Coverage
Path Coverage ensures covering of all the paths

from start to end. All possible paths are

1A-2B-E-4F

1A-2B-E-4G-5H

1A-2C-3D-E-4G-5H

1A-2C-3D-E-4F

So, path coverage is 4.

5.2 Comparison of Model Based Testing with

Formal Based Testing

We have used Lickert Scale (1-5) to show the

average rating of Formal based testing (FBT) and

Model based testing (MBT) approach while

considering some aspects of software testing [48].

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 54|P a g e

5.2.1 Test Coverage

MBT Score: 5

FBT Score: 4

Test coverage is a strength of both MBT and FBT.

The coverage usually depends on the experience of

the tester who is writing the test. In companies,

generally the test cases are written by experienced

testers, if not, the test cases are approved by

experienced testers. Also, in MBT, the test

coverage is higher than FBT because the test cases

are generated by considering the test coverage.

FBT has fairly high test coverage (i.e. branch, path

and statement coverage) but MBT has more

coverage because of its zero - tolerance towards the

test coverage.

5.2.2 Requirement Traceability

MBT Score: 2

FBT Score: 4

There are several ways to make the requirements

traceable through the test cases using formal

specifications. Different applications are used in

order to link the test cases to the software

requirements. There can be a separate column in

the test case which indicates that a test case

belongs to a specific requirement.

In MBT, the traceability is done in a different way.

Requirement traceability is a challenge in MBT

and industries usually find it difficult to track the

results back to the system requirements in the MBT

approach. Recently, some major studies [1, 2 ,10]

have been done in order to find out a better way to

make requirements more traceable in MBT

process.

5.2.3 Understandability of Test cases

MBT Score: 4

FBT Score: 3

The understandability of the test cases depends on

the experience of the tester who is writing the test

cases. It is a major challenge of FBT because every

tester writes the test cases according to his own

knowledge of the system and business.

In MBT, the automated test cases are not fully

understandable by humans. It depends on which

tool you are using. For example, ConformiqQtronic

and Microsoft’s Spec Explorer adds reasonable

details on the test cases, so thathumans can

understand what are the details and what is to be

tested.

5.2.4 Cost and Time

MBT Score: 5

FBT Score: 3

Cost and time are one the most important attributes

of any approach. It cannot be analyzed which is

more costly FBT or MBT. It depends on different

scenarios, the application to be tested, method of

testing and conditions of testing. In the total cost of

a project, there is around 50-70% cost for quality

assurance and if any defect arises in the release, the

cost is increased even more. MBT is known for

decreasing the overall testing cost and it takes less

time as compared to traditional software testing

approaches.

5.2.5 Test Design and Planning

MBT Score: 4

FBT Score: 2

Test design and planning depends on the system

requirements. Understanding the requirements is

one of the most important tasks before test design

and planning. If the test plans and designs are made

without fully understanding the system

requirements, there is a high chance that re-work

will be required.

Figure 3.Comparative Analysis Scores

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 55|P a g e

5.3 Discussion and Inference

Figure 4.Cross plot graph for Test Coverage

and Test Case detail

Figure 5.Cross plot graph for Requirement

 Traceability, Time and Cost

The rating of the two approaches on constructs

helped in generating the results of our findings.

FBT has high coverage but the test cases are

not much detailed. MBT has higher test

coverage and more detailed test cases if

compared to the FBT approach. The coverage

depends on the extent of testing and

understanding of requirements. Thus, the

coverage depends on the quality of the test

cases, which depends on the quality of the

system requirements.MBT has comparatively

low requirement traceability as compared to

FBT. But at the same time, MBT is more cost

and time efficient.

Advantages of model based testing includes

less cost in project maintenance and

requirement specification frequency. Further

there is fluidity in the designing aspect i.e. in

case of addition of a feature, a new finite state

machine can be added without disturbing the

existing machine model. Which means simple

change can automatically ripple through the

entire suite of test cases and through this

higher level of automation is achieved. Hence

more importance is given to the design rather

than coding. This testing model has vast

coverage which means exhaustive testing is

possible.

However there are some difficulties which are

faced in model based testing. First, it requires

extensive formal specification to build the

model and test it. Further the test cases are

highly dependent on the model on which is

structured upon.

In formal specification based testing has many

advantages which makes it really powerful

testing technique. The main advantage of

formal testing methods is that it greatly reduces

the amount of time and effort used during later

stages of testing by efforts used in earlier

stages of system construction. It helps in

removal of inconsistencies in the process of

software development and also provides

validation to every step in software

development [26]. It also provides support in

Model Based Testing.

Another major advantage as mentioned above

include the production of best test cases or test

data sets and test result analysis which helps in

detecting very minute errors during testing

process. It is based on mathematical notation

and proofs which makes it a really reliable

technique for software testing in comparison to

other techniques of software testing. It

provides the accuracy measure of the functions

of software and at the same time is cheaper

method to implement. Abstraction is another

advantage in formal specifications method.

Apart from these, formal based methods of

software testing also has some limitations.

Formal Specifications Based Testing

techniques are quite complex for integration

testing which include system testing and sub-

system testing but can be applied. This is

because these techniques do not describe the

architecture and interrelationships between the

operations of the system. Apart from this it

does not take into account the informal

measures and hence may not produce

completely correct results in complex

situations [35]. There are some advancements

need to be done for making formal

specification based testing a more effective

tool. These can include ambiguity resolution

technique, combination of two or more

mathematical models etc. in order to get even

better results.

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 56|P a g e

VI. CONCLUSION

In this research paper we have compared two black

testing techniques: formal based testing and model

based testing. Model based testing generates test

cases in the form of models and tests are done in

conformance with it while in formal based testing,

specific methods are applied to test the software.

On the basis of our findings we conclude that

formal based testing is better in terms of

requirement traceability but model based testing is

more feasible in terms of cost and time of project

maintenance. Formal based testing supports and

enhances the features model based testing to a great

extent .The combined model is termed as Formal

Model Specification based Testing which combines

the characteristics of both the models and works

more efficiently.

VII. ACKNOWLEDGEMENT

We would like to acknowledge the immense

support of our Professor Dr Manjula R without

whom it was not possible to write the paper. Her

guidance formed the base of the paper and her

expertise comments greatly enhanced the

manuscript. We would also like thank our

university (VIT University, Vellore) which has

always encouraged the students to go in the field of

research and develop an interest towards

exploration and innovation.

REFERENCES

[1] Lyu, M.R. 1998. An integrated approach to

 achieving high software reliability.

Aerospace Conference, 1998. Proceedings. ,

IEEE (1998), 123 – 136.

[2] Patton, Ron. Software Testing. , International

Standard Book Number: 0-672-31983-7,

2001

[3] Kaner, Cem (November 17, 2006).

"Exploratory Testing" (PDF). Florida

Institute of Technology, QualityAssurance

Institute Worldwide Annual Software

Testing Conference, Orlando, FL.

[4] Utting, Mark, and Bruno Legeard. Practical

 model-based testing: a tools approach.

Morgan Kaufmann, 2010.

[5] Infamous Error Case Studies,Patton, Ron.

Software Testing. , International Standard

Book Number: 0-672-31983-7, 2001,pg10-

13

[6] https://msdn.microsoft.com/en-

us/library/ee620399.aspx

[7] Fujiwara, S., Bochmann, G., Khendek, F.,

Amalou, M., and Ghedamsi, A., “Test

Selection Basedon Finite State Models”,

IEEE Transactions on Software Engineering,

Vol. 17, No. 6., June 1991.

[8] Chow, T. S., “Testing Software Design

Modeled by Finite-State Machines,” IEEE

Transactions on Software Engineering, Vol.

SE-4, No. 3, May 1978.

[9] Holzmann, G., Design and Validation of

Computer Protocols, AT&T Bell

Laboratories,Prentice Hall, 1991.

[10] Musa, J.D., “Operational profiles in software

reliability engineering,” IEEE Software,

10(2), pp14-32.

[11] Apfelbaum, L., “Automated Functional Test

 Generation”, Proceedings of the

Autotestcon’95 Conference, IEEE, 1995.

[12] Savage, P., Walters, S, and Stephenson, M.,

 “Automated Test Methodology for

Operational Flight Programs”, Proceedings

of the 1997 IEEE Aerospace Conference,

1997.

[13] Black Box Testing,Patton, Ron. Software

Testing. , International Standard Book

 Number: 0-672-31983-7, 2001,pg55

[14] Myers, Glenford J. (1979). The Art of

Software Testing. John Wiley and Sons.

ISBN 0411043281.

[15] Gelperin, D.; B. Hetzel (1988). "The Growth

of Software Testing". CACM 31 (6): 687–

695.doi:10.1140/62959.62965. ISSN

00010782.

[16] Dalal, Siddhartha R., et al. "Model-based

testing in practice." Proceedings of the 21st

international conference on Software

engineering. ACM, 1999.

[17] Until 1956 it was the debugging oriented

period, when testing was often associated to

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 57|P a g e

debugging: there was no clear difference

between testing and debugging. Gelperin,

D.;B. Hetzel(1988). "The Growth of

Software Testing". CACM 31 (6). ISSN

00010782.

[18] From 1957–1978 there was the

demonstration oriented period where

debugging and testing was distinguished

now – in this period it was shown, that

software satisfies the requirements.

Gelperin, D.; B.Hetzel (1988). "The Growth

of Software Testing". CACM 31 (6).

ISSN 00010782.

[19] The time between 1979–1982 is announced

 as the destruction oriented period, where

the goal was to find errors. Gelperin,

D.; B. Hetzel (1988). "The Growth of

Software Testing". CACM 31 (6). ISSN

00010782.

[20] 1983–1987 is classified as the evaluation

oriented period: intention here is that during

the software lifecycle a product evaluation is

provided and measuring quality. Gelperin,

D.; B. Hetzel(1988). "The Growth of

Software Testing". CACM 31 (6). ISSN

00010782.

[21] From 1988 on it was seen as prevention

oriented period where tests were to

demonstrate that software satisfies its

specification, to detect faults and to prevent

faults. Gelperin, D.; B. Hetzel (1988). "The

Growth of Software Testing". CACM 31

(6).ISSN 00010782.

[22] A. Huima (2007) "Implementing Conformiq

Qtronic," Testing of Software and

Communicating Systems, Springer, pp. 1-12.

DOI: 10.1007/978-3-540-73066-8_1

[23] D. Dranidis, K. Bratanis and F. Ipate (2012)

 "JSXM: a tool for automated test

generation". In Proc. of SEFM'12. DOI:

10.1007/978-3-642-33826-7_25

[24] J. Jacky (2011), "PyModel: Model-based

testing in Python", Proc. of the 9th Python in

Science Conf. (SCIPY 2011) link.

[25] M. Veanes et al. (2008) "Model-Based

Testing of Object-Oriented Reactive

Systems with Spec Explorer," Formal

Methods and Testing,Springer, pp. 39-76.

DOI: 10.1007/978-3-540- 789178_2

[26] Hans-Martin Horcher and Jan Peleska,

”Using formal specifications to support

software testing”, Springer, 1995

[27] YoonsikCheon and Myoung Kim, “A

Specification-Based Fitness Function for

EvolutionaryTesting of Object-Oriented

Programs”, ACM, 2006

[28] D. RICHARD KUHN, “Fault Classes and

Error Detection Capability of Specification-

Based Testing”, ACM, 1999

[29] Charles Pecheur, Franco Raimondi and

Guillaume Brat, “A Formal Analysis of

Requirements-Based Testing”, ACM, 2009

[30] James A. Whittaker and J. H. Poore,

“Statistical Testing for Clean room Software

Engineering”, IEEE, 1992

[31] Gilles Bernot, Marie Claude Gaudel and

Bruno Marre, “Software testing based on

formal specifications :a theory and a tool”,

Software Engineering Journal, 1991

[32] Weikai Miao and Shaoying Lin, “A Formal

 Specification – Based Integration Testing

Approach”, Springer, 2013

[33] Marie-Claude Gaudel, “Software Testing

Based on Formal Specification”,

Springer,2010

[34] Mirza Mahmood Baig and Dr.Ansar Ahmad

Khan, “A Formal Technique for Reducing

 Software Testing Time Complexity”,

Springer, 2010

[35] Mona Batra, Amit Malik, and Dr.Meenu

Dave, “Formal Methods : Benefits,

Challenges and Future Direction”, Journal of

Global Research in Computer Science,

2013, Volume 4, No.5

[36] Pressman Roger S: “Software Engineering”-

A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

[37] Mona Batra, S.K Pandey: Formal methods in

requirement engineering. International

Journal of Computer Applications , pp- 7-14,

Volume 70–No.13

[38] Malaiya, Y.K.; Naixin Li; Bieman, J.;

Karcich, R.; Skibbe, B.; , "The relationship

betweentest coverage and reliability,"

Software Reliability Engineering, 1994.

Proceedings., 5
th

 International Symposium

on , vol., no., pp.186-195, 6-9 Nov 1994

[39] Hong Zhu, Patrick A. V. Hall, and John H.

R. May. 1997. Software unit test coverage

and adequacy. ACM Comput. Surv. 29, 4

(December 1997), 366-427

[40] Wood, M., Roper, M., Brooks, A and Miller,

J. 1997. Comparing and combining

 software defect detection techniques : a

replicated empirical study. Software

Engineering— ESEC/FSE’97. (1997),

262–277

[41] http://ajoysingha.info/Documents/Branch%2

 0Statement%20Path%20Coverage.pdf

[42] Andersson, C. and Runeson, P.

2002.Verification and validation in industry-

a q ualitativesurvey on the state of

practice. Empirical Software Engineering,

Vatsal Mishra et al.. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 4, (Part - 7) April 2016, pp.49-58

 www.ijera.com 58|P a g e

2002. Proceedings. 2002International

Symposium n (2002), 37–41.

[43] Andrea De Lucia, FaustoFasano, Rocco

 Oliveto, and GenoveffaTortora. 2007.

Recovering traceability links in software

artifact management systems using

information retrievalmethods. ACM Trans.

Softw. Eng. Methodol. 16, 4, Article 13

(September 2007).

DOI=10.1140/1276933.1276934

http://doi.acm.org/10.1140/1276933.127693

4

[44] Gotel, O.C.Z. and Finkelstein, C. 1994. An

 analysis of the requirements traceability

problem. Requirements Engineering, 1994.,

 Proceedings of the First International

Conference on (1994), 94–101.

[45] Tamai, T. and Kamata, M.I. 2009. Impact of

Requirements Quality on Project Success or

Failure. Design Requirements Engineering:

A Ten-Year Perspective. (2009), 258–275.

[46] “Doors,” http://www-

01.ibm.com/software/awdtools/doors/

[47] Brinkkemper, S. 2004. Requirements

engineering research the industry is and is

not waitingfor. 10th Anniversary Int.

Workshop on Requirements Engineering:

Foundation forSoftware Quality. Riga Latvia

(2004), 41–54.

[48] Agruss, C. and Johnson, B. 2000. Ad Hoc

Software Testing: A perspective on

exploration and improvisation. Florida

Institute of Technology (2000).

